



# **RPC 5LGA**

# Automatic power factor controller

User Manual

#### WARNING!

Carefully read the manual before the installation or use.

This device must be installed by qualified personnel, in compliance with current rules and regulations, in order to avoid damages or safety hazards for people and belongings. Before any maintenance operation on the device, cut off the voltage from measuring and supply inputs and short-circuit the Current Transformer input terminals. The Manufacturer shall not be held liable in case of incorrect use of the device.

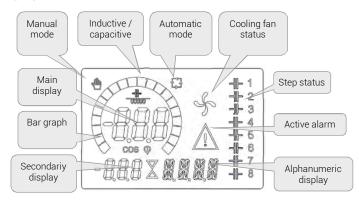
Products illustrated herein are subject to alteration and changes at any moment and without prior notice. Therefore, technical data and descriptions in the document do not have any contractual value. An interrupting device must be installed close by the equipment and within easy reach of the operator. The device must be marked as the disconnecting device of the equipment (IEC EN 61010-1).

ALL75 nov21 1/16

| 1    | DESCRIPTION                                   | 3    |
|------|-----------------------------------------------|------|
| 2    | FRONT KEYBOARD                                | 3    |
| 3    | DISPLAY INDICATIONS                           |      |
| 4    | OPERATING MODES                               |      |
| 5    | MEASURES                                      | 4    |
| 6    | KEYPAD LOCK                                   |      |
| 7    | EXPANDABILITY                                 |      |
| 8    | IR PROGRAMMING PORT                           |      |
| 9    | PARAMETER SETTING VIA PC                      | 5    |
| 10   | PARAMETER SETTING (SETUP) VIA THE FRONT PANEL |      |
| 11   | RAPID CT SETUP                                |      |
| 12   | PARAMETER TABLE                               | 7    |
| 13   | ALARMS                                        |      |
| 14   | COMMANDS MENU                                 |      |
| 15   | WI-FI DONGLE USE (CX02)                       |      |
| 16   | INSTALLATION                                  |      |
| 17   | INFORMATION & SERVICE                         | . 11 |
| WIRI | NG DIAGRAMS                                   | 12   |
|      | MNALS                                         |      |
|      | NSIONS & CUTOUT - [MM]                        |      |
|      | INSIONS & COTOUT - [MM]                       |      |
|      |                                               |      |

#### **DESCRIPTION** 1

- Automatic power factor controller.
- Flush-mount, standard 96x96mm housing.
- Backlit LCD screen.
- 5 relays, expandable to 7 max.
- 4 navigation keys for function and settings.
- Alarm messages in 6 languages.
- Expansion bus with 1 slot for expansion modules:
  - o RS232, RS485, USB communications interface.
  - Additional relay outputs.
- High accuracy TRMS measurements.
- Wide selection of electrical measures, including voltage and current THD with harmonic analysis up to 15th order.
- Voltage input separated from power supply, suitable for VT connection in medium voltage applications.
- Wide-range power supply (100-440VAC).
- Front optical programming interface: galvanically isolated, high speed, waterproof, USB and WIFI dongle compatible.
- Programming from front panel, from PC or from tablet/smartphone.
- 2-level password protection for settings.
- Backup copy of original commissioning settings.
- Built-in temperature sensor.
- Tool-less panel mount.


### FRONT KEYBOARD

**MODE** key Selects among available measurements. Used also to access programming menus.

▼ ▲ keys Sets values and selects steps. key key

Selects operating mode between manual and automatic.

#### 3 **DISPLAY INDICATIONS**



#### 4 **OPERATING MODES**

#### 4.1 **MAN AND AUT MODES**

The icons AUT and MAN indicate the operating mode automatic or manual. To change the mode, press and hold the key for 1 second. The operating mode remains stored even after removing and reapplying the power supply voltage.



When the unit is in manual mode, you can select one of the steps and manually connected or disconnect it. In addition to the specific icon, the alphanumeric display shows MAN in order to highlight the manual mode condition. Press MODE to view the other measurements as usual. While the display shows MAN, it is possible to select the step to be switched on or off. To select a step, use the ▲or ▼keys. The selected step will flash quickly. Press MODE to activate or deactivate the selected step. If the selected step has not yet exhausted the reconnection time, the 🕮 icon will flash to indicate that the transaction has been accepted and will be conducted as soon as possible. Manual configuration of the steps is maintained even when the power supply voltage is removed. When the power returns, the original state of the steps is restored.



▲ ▼: Select step - MODE :Change step status

#### AUT MODE 4.3



In automatic mode, the controller calculates the optimum configuration of capacitor steps in order to reach the set cosφ. The selection criteria takes into account many variables such as: the power of each step, the number of operations, the total

time of use, the reconnection time, etc. The controller displays the imminent connection or disconnection of the steps with the flashing of their identification number (left). The flashing can last in cases in which the insertion of a step is not possible due to the reconnection time (discharge time of the capacitor). The device initiates automatic corrections when there is an average reactive power request ( $\Delta kvar$ ) higher than 50% of the smallest step, and the measured  $\cos \phi$  is different from the setpoint.

#### 5 MEASURES

The RPC 5LGA controller provides a set of measurements displayed on the alphanumeric display, in conjunction with the current  $\cos \varphi$  that is always displayed on the main display. Press the work that is always displayed on the main display. Press the key to scroll through the measures in rotation. After 30 seconds without pressing any buttons, the display automatically returns to the default measurement defined by P.47. If P.47 is set on the ROT, then the measures rotate automatically every 5 seconds. At the bottom of the list of measures it is possible to set the setpoint of the  $\cos \varphi$ , acting on the same value set with P.19. Below is a table with the measurements displayed.

| MEASURE                        | ICON      | DESCRIPTION                                                                                                                         |
|--------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| Delta-kvar                     | Δkvar     | kvars needed to reach the cosphi setpoint. If delta-kvar is positive cpacitors need to be inserted, if negative to be disconnected. |
| ▼                              | kvar      | Total kvar of the plant.                                                                                                            |
| <b>A</b>                       | ΔSTEP     | Number of equal steps to achieve the target power factor.                                                                           |
|                                |           | MODE                                                                                                                                |
| Voltage                        | V         | RMS voltage of the plant current.                                                                                                   |
| ▼                              | V HI      | Maximum voltage value measured.                                                                                                     |
|                                |           | MODE                                                                                                                                |
| Current                        | A         | RMS current of the plant voltage.                                                                                                   |
| ▼                              | A HI      | Maximum current value masured.                                                                                                      |
|                                |           | MODE                                                                                                                                |
| AVERAGE PF                     | WPF       | Weekly average power factor.                                                                                                        |
| ▼                              | PF        | Instantaneous total power factor.                                                                                                   |
|                                | ı         | MODE                                                                                                                                |
| THD CAP.                       | THdC      | Capacitors total harmonic distortion (THD) in current.                                                                              |
| ▼                              | ТС НІ     | Maximum THD value measured.                                                                                                         |
|                                |           | MODE                                                                                                                                |
| Temperature                    | °C °F     | Temperature of internal sensor.                                                                                                     |
| ▼                              | °CHI °FHI | Maximum temperature value measured.                                                                                                 |
|                                |           | MODE                                                                                                                                |
| Voltage THD                    | THDV      | Total harmonic distortion % (THD) of plant voltage.                                                                                 |
| ▼ ▲                            | VH02VH15  | % voltage harmonic content from 2.nd up to 15.th order                                                                              |
|                                |           | MODE                                                                                                                                |
| CURRENT THD                    | THDI      | Total harmonic distortion % (THD) of plant current.                                                                                 |
| ▼ ▲                            | IH02IH15  | % Current harmonic content from 2.nd up to 15.th order                                                                              |
|                                |           | MODE                                                                                                                                |
| $COS oldsymbol{\phi}$ SETPOINT | 111D 04D  | 0.11.                                                                                                                               |
| ▼ ▲                            | IND CAP   | Setting of desired cosφ setpoint (same as P.19).                                                                                    |
|                                | l.        | MODE                                                                                                                                |
| STEP POWER                     | _         |                                                                                                                                     |
| ▼ ▲                            | %         | • Step residual power, as a percentage of the set rated power.                                                                      |
|                                |           | MODE                                                                                                                                |
| STEP COUNTER                   | 000       | Operation assumes of the atom                                                                                                       |
| ▼ ▲                            | OPC       | • Operation counter of the step.                                                                                                    |
|                                |           | MODE                                                                                                                                |
| STEP HOURS                     | 11        | • Hour mater of the etap insertion                                                                                                  |
| ▼ ▲                            | Н         | Hour meter of the step insertion.                                                                                                   |
|                                |           |                                                                                                                                     |

• These measures are shown only if the Step trimming function is enabled (P.25=ON) and the advanced password is enabled and entered.

#### 6 KEYPAD LOCK

A function to exclude all modification to operating parameters can be enabled; measurement viewing is still provided in any case. To lock and unlock the keypad, press and keep the  $\P$  key pressed. Then press the  $\blacktriangle$  key three times and the  $\P$  key

twice and after that release MODE .. The display will show Loc when the keypad is locked and UNL when it is unlocked. When the lock is enabled, it is not possible to make the following operations:

- Operation between automatic and manual mode
- Access to set-up menus
- Change of cosφ set-point

By attempting to conduct the above operations, the display will view Loc to indicate the locked keypad state.

#### 7 EXPANDABILITY

Thanks to expansion bus, the RPC 5LGA can be expanded with one expansion series module.

The supported expansion modules can be grouped in the following categories:

- additional steps
- communication modules
- digital I/O modules

To insert an expansion module:

- remove the power supply to RPC 5LGA regulator.
- remove the protecting cover of the expansion slot.
- insert the upper hook of the expansion module into the fixing hole on the top of the expansion slot.
- rotate down the module body, inserting the connector on the bus.
- push until the bottom clip snaps into its housing.







When the RPC 5LGA regulator is powered on, it automatically recognises the expansion module that have been mounted. The expansion modules provide additional resources that can be used through the dedicated setup menus.

The setup menus related to the expansions are always accessible, even if the expansion modules are not physically fitted. The following table indicates which models of expansion modules are supported:

| MODULE TYPE      | CODE   | FUNCTION       |
|------------------|--------|----------------|
| ADDITIONAL STEPS | OUT2NO | 2 STEP RELAYS' |
| COMMUNICATION    | COM232 | RS-232         |
| COMMUNICATION    | COM485 | RS-485         |

#### 8 IR PROGRAMMING PORT

The parameters of the RPC 5LGA regulator can be configured through the front optical port, using the IR-USB programming dongle, or with the IR-WiFi dongle. This programming port has the following advantages:

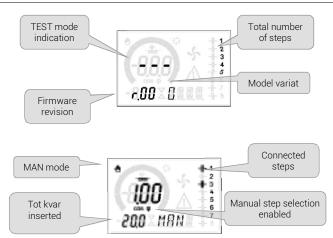
- Allows for configuring and servicing the RPC 5LGA regulator without having to access the rear of the device or having to open the electrical panel.
- It is galvanically isolated from the internal circuits of the RPC 5LGA regulator, guaranteeing the greatest safety for the operator.
- High speed data transfer.
- IP54 front panel protection.
- Limits the possibility of unauthorized access with device configuration since it is necessary to have the IR-USB or IR-WI-FI dongles.

Simply hold the dongle up to the front panel, connecting the plugs to the relevant connectors, and the device will be acknowledged as shown by the LINK LED on the programming dongle flashing green.



USB programming dongle




WIFI programming dongle

# 9 PARAMETER SETTING VIA PC

The *PFC Remote monitoring* software can be used to transfer (previously programmed) set-up parameters from the RPC 5LGA regulator to the hard drive of the PC and vice versa. The parameter may be partially transferred from the PC to the RPC 5LGA regulator, transferring only the parameters of the specified menus.

#### 10 PARAMETER SETTING (SETUP) VIA THE FRONT PANEL

To access the programming menu (setup): To enter parameter programming the unit must be in TEST mode (first programming)



From the normal measurement display, press and hold MODE for 3 seconds to recall the main menu. SET is displayed on the main display.

If the password has been set (P.21 = ON), the display shows PAS (password entry request instead of SET). Set the numeric password using  $\blacktriangle$  and then press to move to next digit. If the password is correct the unit will show ok u or ok A depending on the entered password is user or the advanced level. The password can be defined with parameters P.22 and P.23. Factory default is 001 and 002 respectively. If the entered password is wrong the unit will show ERR. After having entered the password, the access is enabled until the unit is re-initialized or for 2 minutes without pressing any key. After having entered the password, repeat the procedure to access the parameter setting.

Press ▲ ▼ to select the desired submenu (BAS→ ADV → ALA ...) that is shown on the alphanumeric display.



The following table lists the available submenus:

or in MAN mode

| COD  | DESCRIPTION                   |
|------|-------------------------------|
| BAS  | Access to Base menu           |
| ADV  | Accesso to Advanced menu      |
| ALA  | Accesso to Alarm menu         |
| CMD  | Access to Command menu        |
| CUS  | Access to Custom menu         |
| EXIT | Exits saving modifications.   |
| SAVE | Exits without saving (cancel) |

Press to access the submenu. When in a submenu, the main display shows the code of the selected parameter (eg P.01), while the numeric/alphanumeric displays at the bottom of the screen shows the parameter value and / or description. Press to advance in the selection of items (such as scroll through parameters P.01  $\rightarrow$  P02  $\rightarrow$  P03...), or press MODE to go back to the previous parameter. While a parameter is selected, its value can be increased or decreased with  $\blacktriangle$   $\blacktriangledown$ .



Once the last parameter of the menu has been reached, pressing an once more will return back to the submenu selection. Using ▼, select SAVE to save the changes or EXIT to cancel.



Alternatively, from within the programming, holding for three seconds will save the changes and exit directly. If the user does not press any key for more than 2 minutes, the system leaves the setup automatically and goes back to normal viewing without saving the changes done on parameters (like EXIT). N.B.: a backup copy of the setup data (settings that can be modified using the keyboard) can be saved in the eeprom memory of the RPC 5LGA regulator. This data can be restored

when necessary in the work memory. The data backup 'copy' and 'restore' commands can be found in the *Commands menu*.

#### 11 RAPID CT SETUP

When the CT value is not known and only used at the moment of the installation, the P.01 parameter for CT primary can remain set at OFF while all the others can be programmed. In this case, during the system installation and once the controller is powered up, the display will show a flashing cT (Current Transformer). By pressing  $\blacktriangle \blacktriangledown$  the CT primary can be set directly. Once programmed, press to confirm. The unit will store the setting into P.01, and directly restart in automatic mode.



### 12 PARAMETER TABLE

All the programming parameters are listed in the table below. For each parameter, possible setting range and factory default are indicated, as well as a brief explanation of the parameter function. The parameter description shown on the display can in some cases be different from what is reported in the table because of the reduced number of available characters. However, the parameter code can be used as a reference.

**Note** The parameters shown in the table with a shaded background are **essential** to the operation of the system, thus they represent the minimum required programming for operation.

#### 12.1 BASE MENU

| COD  | DESCRIPTION                | PSW | UoM  | DEF      | RANGE                                                    |
|------|----------------------------|-----|------|----------|----------------------------------------------------------|
| P.01 | CT primary                 | Usr | А    | OFF      | OFF / 110.000                                            |
| P.02 | CT secondary               | Usr | А    | 5        | 1/5                                                      |
| P.03 | CT read phase              | Usr |      | L1       | L1/L2/L3                                                 |
| P.04 | CT wiring polarity         | Usr |      | Aut      | Aut / Dir / Inv                                          |
| P.05 | Voltage read phase         | Usr |      | L2-L3    | L1-L2 / L2-L3 / L3-L1 / L1-N / L2-N / L3-N               |
| P.06 | Smallest step power        | Usr | Kvar | 1.00     | 0.10 10000                                               |
| P.07 | Rated installation voltage | Usr | V    | 400V     | 50 50000                                                 |
| P.08 | Nominal frequency          | Usr | Hz   | Aut      | Aut / 50Hz / 60Hz / Var                                  |
| P.09 | Reconnection time          | Adv | sec  | 60       | 1 30000                                                  |
| P.10 | Sensitivity                | Usr | sec  | 60       | 1 1000                                                   |
| P.11 | Step 1 function            | Usr |      | OFF      | OFF / 132 / ON<br>NOA / NCA / FAN<br>MAN / AUT<br>A01A12 |
| P.12 | Step 2 function            | Usr |      | OFF      | =                                                        |
| P.13 | Step 3 function            | Usr |      | OFF      | =                                                        |
| P.14 | Step 4 function            | Usr |      | OFF      | =                                                        |
| P.15 | Step 5 function            | Usr |      | OFF      | =                                                        |
| P.16 | Step 6 function            | Usr |      | OFF      | =                                                        |
| P.17 | Step 7 function            | Usr |      | OFF      | =                                                        |
| P.19 | Cos-phi setpoint           | Usr |      | 0.95 IND | 0.50 Ind - 0.50 Cap                                      |
| P.20 | Alarm messages language    | Usr |      | ENG      | ENG / ITA / FRA / SPA / POR / DEU                        |

- P.01 The value of the primary current transformer. Example: with CT 800/5 set 800. If set to OFF, after the power-up the device will prompt you to set the CT and allow direct access to this parameter.
- P.02 Value of the secondary of the current transformers. Example: with CT 800/5 set 5.
- P.03 It defines on which phase the device reads the current signal. The wiring of current inputs must match the value set for this parameter. Supports all possible combinations of parameter P.05.
- P.04 Reading the connection polarity of the CT.
  - AUT = Polarity is automatically detected at power up. Can only be used when working with only one CT and when the system has no generator device.
  - Dir = Automatic detection disabled. Direct connection.
  - Inv = Automatic detection disabled. Reverse wiring.
- P.05 Defines on which and on how many phases the device reads the voltage signal. The wiring of voltage inputs must match the setting for this parameter. Supports all possible combinations of parameter P.03.
- P.06 Value in kvar of the smallest step installed (equivalent to the step weight 1). Rated power of the capacitor bank provided at the rated voltage specified in P.07 (exemple: step 10kvar-460V supplied 400V ¬10 x (400)²/(460)² ¬set 7,5kvar).
- P.07 Installation rated voltage, which is delivered in specified power P.06.
- P.08 Working frequency of the system:
  - Aut = automatic selection between 50 and 60 Hz at power on.
  - 50Hz = fixed to 50 Hz.
  - 60Hz = fixed to 60 Hz.
  - Var = variable, measured continuously and adjusted.
- P.09 Minimum time that must elapse between the disconnection of one step and the subsequent reconnection both in MAN or AUT mode. During this time the number of the step on the main page is blinking.

P.10 Connection sensitivity. This parameter sets the speed of reaction of the controller. With small values of P.10 the regulation is fast (more accurate around the setpoint but with more step swithchings). With high values instead we'll have slower reactions of the regulation, with fewer switchings of the steps. The delay time of the reaction is inversely proportional to the request of steps to reach the setpoint: waiting time = (sensitivity / number of steps required).

Example: setting the sensitivity to 60s, if you request the insertion of one step of weight 1 are expected 60s (60/1 = 60). If instead serve a total of 4 steps will be expected 15s (60/4 = 15).

P11 ... P17 Function of output relays 1 ... 7:

OFF = Not used.

1.. 32 = Weight of the step. This relay drives a bank of cpacitors which power is n times (n = 1...32) the smallest power defined with parameter P.06.

ON = Always on.

NOA = Alarm normally de-energized. The relay is energized when any alarm with the Global alarm property arises.

NCA = Alarm normally energized. The relay is de-energized when any alarm with the Global alarm property arises.

FAN = The relay controls the cooling fan.

MAN = Relay is energized when device is in MAN mode.

AUT = Relay is energized when device is in AUT mode.

A01 ... A12= The relay is energized when the alarm specified is active.

P.19 Setpoint (target value) of the cosφ. Used for standard applications.

P.20 Language of scrolling alarm messages

#### 12.2 ADVANCED MENU

| COD  | DESCRIPTION                                          | PSW | UOM  | DEF              | RANGE                                                                     |
|------|------------------------------------------------------|-----|------|------------------|---------------------------------------------------------------------------|
| P.21 | Password enable                                      | Adv |      | OFF              | OFF / ON                                                                  |
| P.22 | User password                                        | Usr |      | 001              | 0-999                                                                     |
| P.23 | Advanced password                                    | Adv |      | 002(*)           | 0-999                                                                     |
| P.24 | Wiring type                                          | Usr |      | 3PH              | 3PH Trifase / 1PH Monofase                                                |
| P.25 | Step trimming                                        | Adv |      | ON               | ON Abilitato / OFF Disabilitato                                           |
| P.26 | Setpoint clearance +                                 | Usr |      | 0.00             | 0 – 0.10                                                                  |
| P.27 | Setpoint clearance -                                 | Usr |      | 0.00             | 0 - 0.10                                                                  |
| P.28 | Step insertion mode                                  | Usr |      | STD              | STD Standard / LIN Lineare / DISC                                         |
| P.29 | Cogeneration cosφ setpoint                           | Usr |      | OFF              | OFF / 0.50 IND - 0.50 CAP                                                 |
| P.30 | Disconnection sensitivity                            | Usr | sec  | OFF              | OFF / 1 - 600                                                             |
| P.31 | Step disconnection passing in MAN                    | Usr |      | OFF              | OFF Disabilitato / ON Abilitato                                           |
| P.32 | Capacitor current overload alarm threshold           | Adv | %    | 50               | OFF / 0150                                                                |
| P.33 | Capacitor overload immediate disconnection threshold | Adv | %    | 83               | OFF / 0 200                                                               |
| P.34 | VT primary                                           | Usr | ٧    | OFF              | OFF / 50-50000                                                            |
| P.35 | VT secondary                                         | Usr | V    | 100              | 50-500                                                                    |
| P.36 | Temperature UoM                                      | Usr |      | °C               | °C °Celsius / °F Fahrenheit                                               |
| P.37 | Fan start temperature                                | Adv | 0    | 25               | 0 212                                                                     |
| P.38 | Fan stop temperature                                 | Adv | ۰    | 20               | 0 212                                                                     |
| P.39 | Temperature alarm threshold                          | Adv | ۰    | 55               | 0 212                                                                     |
| P.41 | Maximum voltage alarm threshold                      | Adv | %    | 110              | OFF / 90150                                                               |
| P.42 | Minimum voltage alarm threshold                      | Adv | %    | 90               | OFF / 60110                                                               |
| P.43 | THD V alarm threshold                                | Adv | %    | 6                | OFF / 1250                                                                |
| P.44 | THD I alarm threshold                                | Adv | %    | 12               | OFF / 1250                                                                |
| P.45 | Maintenance interval                                 | Adv | h    | 9000<br>8760(**) | 1 - 30000                                                                 |
| P.46 | Bar-graph function                                   | Usr |      | Kvar ins/tot     | Kvar ins/tot / Corr att/nom / Delta kvar att/tot                          |
| P.47 | Default auxiliary measure                            | Usr |      | TPF sett.        | Delta kvar / V / A / TPF settimanale /<br>THDC / Temp / THDV / THDI / ROT |
| P.48 | Backlight flashing on alarm                          | Usr |      | OFF              | OFF / ON                                                                  |
| P.49 | Serial node address                                  | Usr |      | 01               | 01-255                                                                    |
| P.50 | Serial speed                                         | Usr | bps  | 9.6k             | 1.2k / 2.4k / 4.8k / 9.6k / 19.2k / 38.4k                                 |
| P.51 | Data format                                          | Usr |      | 8 bit – n        | 8 bit, no parity<br>8 bit, odd / 8bit, even<br>7 bit, odd / 7 bit, even   |
| P.52 | Stop bits                                            | Usr |      | 1                | 1-2                                                                       |
| P.53 | Protocol                                             | Usr |      | Modbus RTU       | Modbus RTU / Modbus ASCII                                                 |
| P.54 | Number of insertions for maintenance                 | Adv | kcnt | OFF              | OFF / 160                                                                 |
|      |                                                      |     |      |                  |                                                                           |

P.21 If set to OFF, password management is disabled and anyone has access to the settings and commands menu.

P.22 With P.21 enabled, this is the value to specify for activating user level access. See Password access chapter.

P.23 As for P.22, with reference to Advanced level access. (\*) Available value only if the controller is not installed on the ICAR cabinet

P.24 Number of phases of the power correction panel.

P.25 Enables the measurement of the actual power of the step, performed each time they are switched in. The measure is calculated, as the current measurement is referred to the whole load of the plant. The measured power of the steps is adjusted (trimmed)

after each switching and is displayed on the step life statistic page. When this function is enabled, a 15 sec pause is inserted between the switching of one step and the following, necessary to measure the reactive power variation.

- P.26 P.27Tolerance around the setpoint. When the cosφ is within the range delimited by these parameters, in AUT mode the device does not connect / disconnect steps even if the delta-kvar is greater than the smallest step
- P.28 Selecting mode of steps insertion.

Standard mode - Normal operation with free selection of the steps

Linear mode - the steps are connected in progression from left towards right only following the step number and according to the LIFO (Last In First Out) logic. The controller will not connect a step when the system steps are of different ratings and by connecting the next step, the set-point value would be exceeded.

Disc - As in the Standard mode but with reduced time spent in capacitive

- P.29 Setpoint used when the system is generating active power to the supplier (with negative active power / power factor ).
- P.30 Disconnection sensitivity. Same as the previous parameter but related to disconnection. If set to OFF the disconnection has the same reaction time of connection set with the previous parameter.
- P.31 If set to ON, when switching from AUT mode to MAN mode, steps are disconnected in sequence.
- P.32 Capacitors overload protection Trip threshold (alarm A07), that will arise after an integral delay time, inversely proportional to the overload value.

Note: You can use this protection only if the capacitors are not equipped with filtering devices such as inductors or similar.

- P.33 Threshold beyond which the integral delay for tripping of the overload alarm is zeroed, causing the immediate intervention of the A08 alarm.
- P.34 P.35Data of VTs eventually used in the wiring diagrams.
- P.36 Unit of measure for temperature.
- P.37 P.38Start and stop temperature for the cooling fan of the panel, expressed in the unit set by P.36. The cooling fan is started when the temperature is >= to P.37 and it is stopped when it is < than P.38.
- P.39 Threshold for generation of alarm A08 Panel temperature too high.
- P.41 Maximum voltage alarm threshold, referred to the rated voltage set with P.07, beyond which the alarm A06 Voltage too high is generated.
- P.42 Undervoltage alarm threshold, referred to the rated voltage set with P.07, below which the alarm A05 voltage too low is generated.
- P.43 Maximum installation voltage THD alarm threshold, beyond which the alarm A10 THDV too high is generated.
- P.44 Maximum installation current THD alarm threshold beyond which the alarm A05 voltage too low is generated.
- P.45 Maintenance interval in hours. When it is elapsed, the alarm A12 Ordinary maintenance will be generated. The hour count increments as long as the device is powered. (\*\*) If the controller is installed on the ICAR cabinet
- P.46 Function of the semi-circular bar-graph.

Kvar ins/tot: The bar graph represents the amount of kvar actually inserted, with reference to the total reactive power installed in the panel.

Curr act/nom: Percentage of actual plant current with reference to the maximum current of the CT.

Delta kvar: bar graph with central zero. It represts the positive/negative delta-kvar needed to reach the setpoint, compared to the total kvar installed.

- P.47 Default measure shown on the secondary display. Setting the parameter to ROT, the different measures will be shown with a sequential rotation.
- P.48 If set to ON, the display backlight flashes in presence of one or more active alarms.
- P.49 Serial (node) address of the communication protocol.
- P.50 Communication port transmission speed.
- P.51 Data format. 7 bit settings can only be used for ASCII protocol.
- P.52 Stop bit number.
- P.53 Select communication protocol.
- P.54 Defines the number of the step (considering the step that has the highest count) beyond which the maintenance alarm A12 is generated.

## 12.3 ALARM MENU

| COD  | DESCRIPTION      | PSW | ИОМ | DEF | RANGE                       |
|------|------------------|-----|-----|-----|-----------------------------|
| P.61 | A01 Alarm enable | Adv |     | ALA | OFF / ON / ALA / DISC / A+D |
| P.62 | A01 alarm delay  | Adv |     | 15  | 0-240                       |
| P.63 | A01 delay uom    | Adv |     | min | Min / Sec                   |
|      |                  |     |     |     |                             |
| P.94 | A12 Alarm enable | Adv |     | ALA | OFF / ON / ALA / DISC / A+D |
| P.95 | A12 alarm delay  | Adv |     | 120 | 0-240                       |
| P.96 | A12 delay uom    | Adv |     | sec | Min / Sec                   |

P.61 Enable alarm A01 and defines the behavior of the controller when the alarm is active:

OFF - Alarm disabled

ON - Alarm enabled, only visual

ALA - Alarm enabled, global alarm relay energized (if set)

DISC - Alarm enabled, logoff step

A + D = Alarm relay energized and disconnection of the steps.

Note: When you access the parameters P61, P.64, P67, etc., the auxiliary display shows the relative alarm code.

- P.62 Delay alarm A01.
- P.63 Unit of delay alarm A01.
- P.64 Like P.61 for alarm A02.
- P.65 Like P.62 for alarm A02.
- P.66 Like P.63 for alarm A02.
- P.94 Like P.61 for alarm A12.
- P.95 Like P.62 for alarm A12.
- P.96 Like P.63 for alarm A12.2.

#### 13 ALARMS

When an alarm is generated, the display will show an alarm icon, the code and the description of the alarm in the language selected. If the navigation keys in the pages are pressed, the scrolling message showing the alarm indications will disappear momentarily, only to reappear again after 30 seconds. Alarms are automatically reset as soon as the alarm condition that has generated them disappears. In case of one or more alarms, the behaviour of the RPC 5LGA regulator depends on the *properties* settings of the active alarms.

#### 13.1 ALARM DESCRIPTION

| COD | ALARM                          | DESCRIPTION                                                                                                                                                                                                                                   |
|-----|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A01 | Undercompensation              | In automatic mode, all the available steps are connected but the cosphi is still more inductive than the setpoint.                                                                                                                            |
| A02 | Overcompensation               | In automatic mode, all the steps are disconnected but the cosphi is still more capacitive than the setpoint.                                                                                                                                  |
| A03 | Current too low                | The current flowing in the current inputs is lower than minimum measuring range. This condition can occour normally if the plant has no load.                                                                                                 |
| A04 | Current too high               | The current flowing in the current inputs is higher than maximum measuring range.                                                                                                                                                             |
| A05 | Voltage too low                | The measured voltage is lower than the threshold set with P.42.                                                                                                                                                                               |
| A06 | Voltage too high               | The measured voltage is higher than the threshold set with P.41.                                                                                                                                                                              |
| A07 | Capacitor current overload     | The calculated capacitor current overload is higher than threshold set with P.32 and P.33. After the alarm conditions have disappeared, the alarm message remains shown for the following 5 min or until the user presses a key on the front. |
| 80A | Temperature too high           | The panel temperature is higher than threshold set with P.39.                                                                                                                                                                                 |
| A09 | No-Voltage release             | A no-voltage release has occurred on the line voltage inputs, lasting more than 8ms.                                                                                                                                                          |
| A10 | Voltage THD too high           | The THD of the plant voltage is higher than the threshold set with P.43.                                                                                                                                                                      |
| A11 | Current THD too high           | The THD of the plant current is higher than the threshold set with P.44.                                                                                                                                                                      |
| A12 | Ordinary maintenance requested | The maintenance interval set with P.45 has elapsed. To reset the alarm use the command C.01 (see Command menu).                                                                                                                               |

#### 13.2 DEFAULT ALARM PROPERTIES

| COD. | DESCRIPTION                | ENABLE | ALARM RELAY | DISCONNECTION | DELAY  |
|------|----------------------------|--------|-------------|---------------|--------|
| A01  | Undercompensation          | •      | •           |               | 15 min |
| A02  | Overcompensation           |        |             |               | 120 s  |
| A03  | Current too low            | •      | •           | •             | 30 s   |
| A04  | Current too high           | •      | •           |               | 60 s   |
| A05  | Voltage too low            | •      | •           |               | 60 s   |
| A06  | Voltage too high           | •      | •           | •             | 15 min |
| A07  | Capacitor current overload | •      | •           | •             | 3 min  |
| 80A  | Temperature too high       | •      | •           | •             | 60 s   |
| A09  | No-Voltage release         | •      | •           | •             | 0 s    |
| A10  | Voltage THD too high       | •      | •           | •             | 60 s   |
| A11  | Current THD too high       | •      | •           | •             | 60 s   |
| A12  | Maintenance requested      | •      | •           |               | 0s     |

## 14 COMMANDS MENU

The commands menu allows executing some occasional operations like reading peaks resetting, counters clearing, alarms reset, etc. If the Advanced level password has been entered, then the commands menu allows executing the automatic operations useful for the device configuration. The following table lists the functions available in the commands menu, divided by the access level required. With controller in MAN mode, press for 5s. Press so selecte CMD. Press to access the Commands menu. Select the desired command with for three seconds to execute the selected command. The RPC 5LGA regulator shows ok? with a countdown. By pressing and holding the key until the end of the countdown, the command is executed, while if the key is released before the end, the command is canceled.

| COD. | COMMAND             | PSW | DESCRIPTION                                                   |
|------|---------------------|-----|---------------------------------------------------------------|
| C01  | RESET MAINTENANCE   | Usr | Reset maintenance service interval.                           |
| C02  | RESET STEP COUNT    | Adv | Reset step operation counters.                                |
| C03  | RESET STEP TRIMMING | Adv | Reload originally programmed power into step trimming.        |
| C04  | RESET STEP HOURS    | Adv | Reset step operation hour meters.                             |
| C05  | RESET MAX VALUES    | Adv | Reset maximum peak values.                                    |
| C06  | RESET WEEKLY TPF    | Usr | Resets weekly total power factor history.                     |
| C07  | SETUP TO DEFAULT    | Adv | Resets setup programming to factory default.                  |
| C08  | SETUP BACKUP        | Adv | Makes a backup copy of user setup parameters settings.        |
| C09  | SETUP RESTORE       | Usr | Reloads setup parameters with the backup of factory settings. |

#### 15 WI-FI DONGLE USE (CX02)

The WI-FI dongle offers WI-FI access point capability for connection to PC, Tablet or Smartphone. In addition to this function it also offer the possibility to store and transfer a block of data from/to the RPC 5LGA regulator.

Insert the interface WI-FI into the IR port of RPC 5LGA regulator on the front plate. Switch WI-FI dongle on by pressing the button for 2 sec. Wait until the LINK LED becomes orange flashing. Press 3 times consecutively and fast the dongle button. At this point the display of the RPC 5LGA regulator shows the first of the 6 possible commands (D1...D6). Press ▲ ▼ to select the desired command. Press to execute the selected command. The unit will prompt for a confirmation (oк?). Press once again per confermare, or MODE to cancel. The following table lists the possible commands:

| CODE | COMMAND             | DESCRIPTION                                                                     |
|------|---------------------|---------------------------------------------------------------------------------|
| D1   | SETUP DEVICE→CX02   | Copies Setup settings from RPC 5LGA regulator to WI-FI dongle.                  |
| D2   | SETUP CX02 → DEVICE | Copies Setup settings from WI-FI dongle to RPC 5LGA regulator.                  |
| D3   | CLONE DEVICE →CX02  | Copies Setup settings and working data from RPC 5LGA regulator to WI-FI dongle. |
| D4   | CLONE CX02 → DEVICE | Copies Setup settings and working data from WI-FI dongle to RPC 5LGA regulator. |
| D5   | INFO DATA CXO2      | Shows information about data stored into WI-FI dongle.                          |
| D6   | EXIT                | Exits from dongle menu.                                                         |

### 16 INSTALLATION

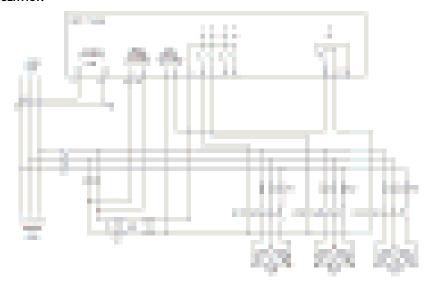
RPC 5LGA regulator is designed for flush-mount installation. With proper mounting, it guarantees IP54 front protection. From inside the panel, for each four of the fixing clips, position the clip in one of the two sliding guide, then press on the clip corner until the second guide snaps in. Push the clip forward pressing on its side and making it slide on the guides until it presses completely on the internal surface of the panel.







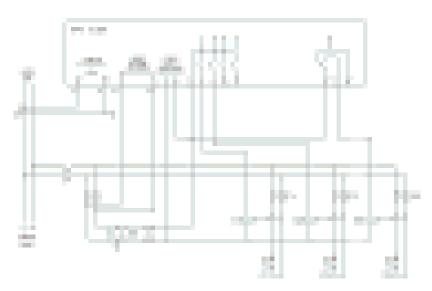
For the electrical connection see the wiring diagrams in the dedicated chapter and the requirements reported in the technical characteristics table.


### 17 INFORMATION & SERVICE

ICAR by ORTEA NEXT
ORTEA S.p.A
Via dei Chiosi 21 20873 Cavenago B.za (MB) – Italy
Tel. +39 02 9591 7800
www.next.ortea.com
ortea@ortea.com

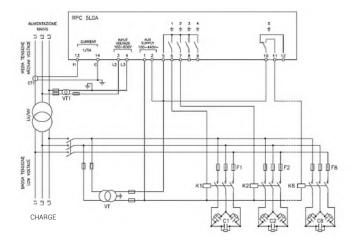
# **WIRING DIAGRAMS**




# STANDARD 3-PH. INSERTION

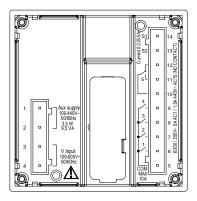


| Voltage measure 1 ph-to-ph voltage reading L2-L3 |                                       |  |  |
|--------------------------------------------------|---------------------------------------|--|--|
| Current measure                                  | L1 phase                              |  |  |
| Phase angle offset                               | Between V (L2-L3) and I (L1) ⇒ 90°    |  |  |
| Capacitor overload current measure               | 1 reading calculated on L2-L3         |  |  |
| Parameter setting                                | P.03 = L1 - P.05 = L2-L3 - P.24 = 3PH |  |  |
| NOTES                                            | F.03 - L1 - F.00 - L2-L3 - F.24 - 3FN |  |  |

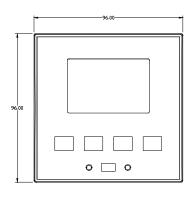

For three-phase connection, the voltage input must be connected phase to phase; the current transformer must be connected on the remaining phase. The polarity of the current/voltage input is indifferent.

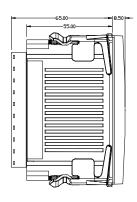
# 1-PH. CONNECTION

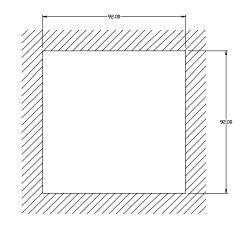



| SINGLE-PHASE CONNECTION Wiring configuration for single-phase applications |                                      |  |
|----------------------------------------------------------------------------|--------------------------------------|--|
| Voltage measure                                                            | 1 phase voltage reading L1-N         |  |
| Current measure                                                            | L1 phase                             |  |
| Phase angle offset                                                         | Between V (L1-N) and I (L1) ⇒ 0°     |  |
| Capacitor overload current measure                                         | 1 reading calculated on L1-N         |  |
| Parameter setting                                                          | P.03 = L1 - P.05 = L1-N - P.24 = 1PH |  |
| NOTES                                                                      |                                      |  |
| IMPORTANT! The polarity of the current/voltage input is in-                | different.                           |  |

# CONFIGURATION WITH MV MEASUREMENT AND CORRECTION





| CONFIGURATION WITH MV MEASUREMENT AND CORRECTION |                                         |                                            |  |
|--------------------------------------------------|-----------------------------------------|--------------------------------------------|--|
| Voltage measure                                  | 1 ph-to-ph voltage reading              | L2-L3 on MV side                           |  |
| Current measure                                  | L1 phase on MV side                     |                                            |  |
| Phase angle offset                               | 90°                                     |                                            |  |
| Parameter setting                                | P.03 = L1<br>P.05 = L2-L3<br>P.24 = 3PH | P.34 = VT1 primary<br>P.35 = VT1 secondary |  |


# **TERMINALS**



# **DIMENSIONS & CUTOUT - [mm]**







# **TECHNICAL CHARACTERISTICS**

| SH | PP | ı١ |
|----|----|----|

| 001121                           |                         |
|----------------------------------|-------------------------|
| Rated voltage Us •               | 100 - 440V~ 110 - 250V= |
| Operating voltage range          | 90 - 484V~ 93,5 - 300V= |
| Frequency                        | 45 - 66Hz               |
| Power consumption/dissipation    | 3,5W - 9,5VA            |
| No-voltage release               | >= 8ms                  |
| Immunity time for microbreakings | <= 25ms                 |

# VOLTAGE INPUTS

| Maximum rated voltage Ue  | 600VAC L-L (346VAC L-N)                  |
|---------------------------|------------------------------------------|
| Measuring range           | 50720V L-L (415VAC L-N)                  |
| Frequency range           | 4565Hz                                   |
| Measuring method          | True RMS                                 |
| Measuring input impedance | $> 0.55M\Omega$ L-N $> 1,10M\Omega$ L-L  |
| Wiring mode               | 1-ph.; 2-ph.; 3-ph. (+N); balanced 3-ph. |
| Accuracy of measurement   | +1% +0.5 digit                           |

#### **CURRENT INPUTS**

| Rated current le        | 1A~ o 5A~                                 |
|-------------------------|-------------------------------------------|
| Measuring range         | 5A: 0,025 - 6° - 1A: 0,025 - 1,2A~        |
| Type of input           | TA ext bt / Lv ext CT / TI ext bt 5A max. |
| Measuring method        | True RMS                                  |
| Overload capacity       | +20% le                                   |
| Overload peak           | 50A / 1 sec                               |
| Accuracy of measurement | ± 1% (0,11,2ln) ±0,5 digit                |
| Power consumption       | <0,6VA                                    |

### MEASURING ACCURACY

Line voltage  $\pm 0.5\%$  f.s.  $\pm 1$  digit

#### RELAY OUTPUT: OUT 1 - 4

| Contact type                      | 4x1 NO+cont. common          |
|-----------------------------------|------------------------------|
| UL Rating                         | B300 30V= 1A aux             |
| Max rated voltage                 | 440V~                        |
| Rated current                     | AC1-5A 250V~ AC15-1,5A 440V~ |
| Maximum current at contact common | 10A                          |

### RELAY OUTPUT: OUT 5

| Contact type      | 1 changeover cont.                |
|-------------------|-----------------------------------|
| UL Rating         | B300 / 30V= 1A aux                |
| Max rated voltage | 415V~                             |
| Rated current     | AC1-5A 250V~ AC15-1,5A 440V~ (NO) |

# INSULATION VOLTAGE

| Rated insulation voltage Ui          | 600V~ |
|--------------------------------------|-------|
| Rated impulse withstand voltage Uimp | 9,5kV |
| Power frequency withstand voltage    | 5,2kV |

# OPERATING CONDITIONS

| Operating temperature    | -20 - +60°C                |
|--------------------------|----------------------------|
| Storage temperature      | -30 - +80°C                |
| Relative humidity        | <80% (IEC/EN 60068-2-78)   |
| Maximum pollution degree | 2                          |
| Overvoltage category     | 3                          |
| Measurement category     |                            |
| Climatic sequence        | Z/ABDM (IEC/EN 60068-2-61) |
| Shock resistance         | 15g (IEC/EN 60068-2-27)    |
| Vibration resistance     | 0.7g (IEC/EN 60068-2-6)    |

# CONNECTIONS

| Terminal type                            | Removable               |
|------------------------------------------|-------------------------|
| Cable cross section (min max)            | 0,22,5 mmq (24÷12 AWG)  |
| UL Rating: Cable cross section (min max) | 0,752.5 mm² (18-12 AWG) |
| Tightening torque                        | 0,56 Nm (5 LBin)        |

# HOUSING

| Version              | Flash mount               |
|----------------------|---------------------------|
| Material             | Polycarbonate             |
| Degree of protection | IP54 front IP20 terminals |
| Weight               | 350g                      |

#### CERTIFICATIONS AND COMPLIANCE

| cULus               | Pending                                                            |
|---------------------|--------------------------------------------------------------------|
| Reference standards | IEC/EN 61010-1, IEC/EN 61000-6-2<br>IEC/ EN 61000-6-4              |
|                     | UL508 e CSA C22.2-N°14                                             |
| UL Marking          | Use 60°C/75°C copper (CU) conductor only                           |
|                     | AWG Range: 0,752.5 mm <sup>2</sup> (18 - 12 AWG) stranded or solid |
|                     | Field Wiring Terminals Tightening Torque: 0,5Nm ( 4.5lb.in)        |
|                     | Flat panel mounting on a Type 1 enclosure                          |

ullet Auxiliary supply drawn from a system with phase-to- neutral voltage  $\leq 300 \text{V}$ 



ORTEA SpA Via dei Chiosi, 21 20873 Cavenago Brianza – Milan – ITALY Tel.: ++39 02 95917800 www.next.ortea.com